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Exercise 7.4.1

Show that Legendre’s equation has regular singularities at © = —1, 1, and oc.

Solution

Legendre’s equation is a second-order linear homogeneous ODE.
(1—2%)y” —2xy +1(1+1)y =0

Divide both sides by 1 — 2 so that the coefficient of 3" is 1.
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There are singular points where the denominators are equal to zero: x = +1. x = —1 is regular

because the following limits are finite.
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x =1 is regular for the same reason.
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In order to investigate the behavior at x = oo, make the substitution,
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in Legendre’s equation.
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Use the chain rule to find what the derivatives of y are in terms of this new variable.
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As a result, the ODE in terms of z is
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or after simplifying,
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Divide both sides by z* — 22 so that the coefficient of d?y/dz? is 1.
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At least one of the denominators is equal to zero at z = 0, so z = 0 is a singular point. Since the
following limits are finite, it is in fact regular.
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Therefore, x = oo is a regular singular point of the Legendre equation.
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