Exercise 7.4.1

Show that Legendre's equation has regular singularities at $x=-1,1$, and ∞.

Solution

Legendre's equation is a second-order linear homogeneous ODE.

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+l(l+1) y=0
$$

Divide both sides by $1-x^{2}$ so that the coefficient of $y^{\prime \prime}$ is 1 .

$$
y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{l(l+1)}{1-x^{2}} y=0
$$

There are singular points where the denominators are equal to zero: $x= \pm 1 . x=-1$ is regular because the following limits are finite.

$$
\begin{aligned}
& \lim _{x \rightarrow-1}(x+1)\left(-\frac{2 x}{1-x^{2}}\right)=\lim _{x \rightarrow-1}\left(-\frac{2 x}{1-x}\right)=1 \\
& \lim _{x \rightarrow-1}(x+1)^{2} \frac{l(l+1)}{1-x^{2}}=\lim _{x \rightarrow-1} \frac{l(l+1)(x+1)}{1-x}=0
\end{aligned}
$$

$x=1$ is regular for the same reason.

$$
\begin{aligned}
& \lim _{x \rightarrow 1}(x-1)\left(-\frac{2 x}{1-x^{2}}\right)=\lim _{x \rightarrow 1}\left(\frac{2 x}{1+x}\right)=1 \\
& \lim _{x \rightarrow 1}(x-1)^{2} \frac{l(l+1)}{1-x^{2}}=\lim _{x \rightarrow 1} \frac{l(l+1)(1-x)}{1+x}=0
\end{aligned}
$$

In order to investigate the behavior at $x=\infty$, make the substitution,

$$
x=\frac{1}{z},
$$

in Legendre's equation.

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+l(l+1) y=0 \quad \rightarrow \quad\left(1-\frac{1}{z^{2}}\right) y^{\prime \prime}-\frac{2}{z} y^{\prime}+l(l+1) y=0
$$

Use the chain rule to find what the derivatives of y are in terms of this new variable.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d z} \frac{d z}{d x}=\frac{d y}{d z}\left(-\frac{1}{x^{2}}\right)=\frac{d y}{d z}\left(-z^{2}\right) \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d z}{d x} \frac{d}{d z}\left[\frac{d y}{d z}\left(-z^{2}\right)\right]=-\frac{1}{x^{2}}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)=-z^{2}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)
\end{aligned}
$$

As a result, the ODE in terms of z is

$$
\left(1-\frac{1}{z^{2}}\right)\left[-z^{2}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)\right]-\frac{2}{z} \frac{d y}{d z}\left(-z^{2}\right)+l(l+1) y=0,
$$

or after simplifying,

$$
\left(z^{4}-z^{2}\right) \frac{d^{2} y}{d z^{2}}+2 z^{3} \frac{d y}{d z}+l(l+1) y=0
$$

Divide both sides by $z^{4}-z^{2}$ so that the coefficient of $d^{2} y / d z^{2}$ is 1 .

$$
\frac{d^{2} y}{d z^{2}}+\frac{2 z^{3}}{z^{4}-z^{2}} \frac{d y}{d z}+\frac{l(l+1)}{z^{4}-z^{2}} y=0
$$

At least one of the denominators is equal to zero at $z=0$, so $z=0$ is a singular point. Since the following limits are finite, it is in fact regular.

$$
\begin{aligned}
& \lim _{z \rightarrow 0} z\left(\frac{2 z^{3}}{z^{4}-z^{2}}\right)=\lim _{z \rightarrow 0} \frac{2 z^{2}}{z^{2}-1}=0 \\
& \lim _{z \rightarrow 0} z^{2}\left[\frac{l(l+1)}{z^{4}-z^{2}}\right]=\lim _{z \rightarrow 0} \frac{l(l+1)}{z^{2}-1}=-l(l+1)
\end{aligned}
$$

Therefore, $x=\infty$ is a regular singular point of the Legendre equation.

